mirror of
https://gitlab.com/suyu-emu/suyu.git
synced 2024-03-15 23:15:44 +00:00
40de7f6fe8
Significantly tidies up two guard conditionals.
837 lines
28 KiB
C++
837 lines
28 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <utility>
|
|
#include "common/assert.h"
|
|
#include "common/logging/log.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/core.h"
|
|
#include "core/file_sys/program_metadata.h"
|
|
#include "core/hle/kernel/errors.h"
|
|
#include "core/hle/kernel/vm_manager.h"
|
|
#include "core/memory.h"
|
|
#include "core/memory_hook.h"
|
|
#include "core/memory_setup.h"
|
|
|
|
namespace Kernel {
|
|
namespace {
|
|
const char* GetMemoryStateName(MemoryState state) {
|
|
static constexpr const char* names[] = {
|
|
"Unmapped", "Io",
|
|
"Normal", "CodeStatic",
|
|
"CodeMutable", "Heap",
|
|
"Shared", "Unknown1",
|
|
"ModuleCodeStatic", "ModuleCodeMutable",
|
|
"IpcBuffer0", "Stack",
|
|
"ThreadLocal", "TransferMemoryIsolated",
|
|
"TransferMemory", "ProcessMemory",
|
|
"Inaccessible", "IpcBuffer1",
|
|
"IpcBuffer3", "KernelStack",
|
|
};
|
|
|
|
return names[ToSvcMemoryState(state)];
|
|
}
|
|
|
|
// Checks if a given address range lies within a larger address range.
|
|
constexpr bool IsInsideAddressRange(VAddr address, u64 size, VAddr address_range_begin,
|
|
VAddr address_range_end) {
|
|
const VAddr end_address = address + size - 1;
|
|
return address_range_begin <= address && end_address <= address_range_end - 1;
|
|
}
|
|
} // Anonymous namespace
|
|
|
|
bool VirtualMemoryArea::CanBeMergedWith(const VirtualMemoryArea& next) const {
|
|
ASSERT(base + size == next.base);
|
|
if (permissions != next.permissions || state != next.state || attribute != next.attribute ||
|
|
type != next.type) {
|
|
return false;
|
|
}
|
|
if (type == VMAType::AllocatedMemoryBlock &&
|
|
(backing_block != next.backing_block || offset + size != next.offset)) {
|
|
return false;
|
|
}
|
|
if (type == VMAType::BackingMemory && backing_memory + size != next.backing_memory) {
|
|
return false;
|
|
}
|
|
if (type == VMAType::MMIO && paddr + size != next.paddr) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
VMManager::VMManager() {
|
|
// Default to assuming a 39-bit address space. This way we have a sane
|
|
// starting point with executables that don't provide metadata.
|
|
Reset(FileSys::ProgramAddressSpaceType::Is39Bit);
|
|
}
|
|
|
|
VMManager::~VMManager() {
|
|
Reset(FileSys::ProgramAddressSpaceType::Is39Bit);
|
|
}
|
|
|
|
void VMManager::Reset(FileSys::ProgramAddressSpaceType type) {
|
|
Clear();
|
|
|
|
InitializeMemoryRegionRanges(type);
|
|
|
|
page_table.Resize(address_space_width);
|
|
|
|
// Initialize the map with a single free region covering the entire managed space.
|
|
VirtualMemoryArea initial_vma;
|
|
initial_vma.size = address_space_end;
|
|
vma_map.emplace(initial_vma.base, initial_vma);
|
|
|
|
UpdatePageTableForVMA(initial_vma);
|
|
}
|
|
|
|
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
|
|
if (target >= address_space_end) {
|
|
return vma_map.end();
|
|
} else {
|
|
return std::prev(vma_map.upper_bound(target));
|
|
}
|
|
}
|
|
|
|
bool VMManager::IsValidHandle(VMAHandle handle) const {
|
|
return handle != vma_map.cend();
|
|
}
|
|
|
|
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
|
|
std::shared_ptr<std::vector<u8>> block,
|
|
std::size_t offset, u64 size,
|
|
MemoryState state) {
|
|
ASSERT(block != nullptr);
|
|
ASSERT(offset + size <= block->size());
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
|
|
VirtualMemoryArea& final_vma = vma_handle->second;
|
|
ASSERT(final_vma.size == size);
|
|
|
|
auto& system = Core::System::GetInstance();
|
|
system.ArmInterface(0).MapBackingMemory(target, size, block->data() + offset,
|
|
VMAPermission::ReadWriteExecute);
|
|
system.ArmInterface(1).MapBackingMemory(target, size, block->data() + offset,
|
|
VMAPermission::ReadWriteExecute);
|
|
system.ArmInterface(2).MapBackingMemory(target, size, block->data() + offset,
|
|
VMAPermission::ReadWriteExecute);
|
|
system.ArmInterface(3).MapBackingMemory(target, size, block->data() + offset,
|
|
VMAPermission::ReadWriteExecute);
|
|
|
|
final_vma.type = VMAType::AllocatedMemoryBlock;
|
|
final_vma.permissions = VMAPermission::ReadWrite;
|
|
final_vma.state = state;
|
|
final_vma.backing_block = std::move(block);
|
|
final_vma.offset = offset;
|
|
UpdatePageTableForVMA(final_vma);
|
|
|
|
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
|
|
}
|
|
|
|
ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size,
|
|
MemoryState state) {
|
|
ASSERT(memory != nullptr);
|
|
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
|
|
VirtualMemoryArea& final_vma = vma_handle->second;
|
|
ASSERT(final_vma.size == size);
|
|
|
|
auto& system = Core::System::GetInstance();
|
|
system.ArmInterface(0).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
|
|
system.ArmInterface(1).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
|
|
system.ArmInterface(2).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
|
|
system.ArmInterface(3).MapBackingMemory(target, size, memory, VMAPermission::ReadWriteExecute);
|
|
|
|
final_vma.type = VMAType::BackingMemory;
|
|
final_vma.permissions = VMAPermission::ReadWrite;
|
|
final_vma.state = state;
|
|
final_vma.backing_memory = memory;
|
|
UpdatePageTableForVMA(final_vma);
|
|
|
|
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
|
|
}
|
|
|
|
ResultVal<VAddr> VMManager::FindFreeRegion(u64 size) const {
|
|
// Find the first Free VMA.
|
|
const VAddr base = GetASLRRegionBaseAddress();
|
|
const VMAHandle vma_handle = std::find_if(vma_map.begin(), vma_map.end(), [&](const auto& vma) {
|
|
if (vma.second.type != VMAType::Free)
|
|
return false;
|
|
|
|
const VAddr vma_end = vma.second.base + vma.second.size;
|
|
return vma_end > base && vma_end >= base + size;
|
|
});
|
|
|
|
if (vma_handle == vma_map.end()) {
|
|
// TODO(Subv): Find the correct error code here.
|
|
return ResultCode(-1);
|
|
}
|
|
|
|
const VAddr target = std::max(base, vma_handle->second.base);
|
|
return MakeResult<VAddr>(target);
|
|
}
|
|
|
|
ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
|
|
MemoryState state,
|
|
Memory::MemoryHookPointer mmio_handler) {
|
|
// This is the appropriately sized VMA that will turn into our allocation.
|
|
CASCADE_RESULT(VMAIter vma_handle, CarveVMA(target, size));
|
|
VirtualMemoryArea& final_vma = vma_handle->second;
|
|
ASSERT(final_vma.size == size);
|
|
|
|
final_vma.type = VMAType::MMIO;
|
|
final_vma.permissions = VMAPermission::ReadWrite;
|
|
final_vma.state = state;
|
|
final_vma.paddr = paddr;
|
|
final_vma.mmio_handler = std::move(mmio_handler);
|
|
UpdatePageTableForVMA(final_vma);
|
|
|
|
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
|
|
}
|
|
|
|
VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
|
|
VirtualMemoryArea& vma = vma_handle->second;
|
|
vma.type = VMAType::Free;
|
|
vma.permissions = VMAPermission::None;
|
|
vma.state = MemoryState::Unmapped;
|
|
vma.attribute = MemoryAttribute::None;
|
|
|
|
vma.backing_block = nullptr;
|
|
vma.offset = 0;
|
|
vma.backing_memory = nullptr;
|
|
vma.paddr = 0;
|
|
|
|
UpdatePageTableForVMA(vma);
|
|
|
|
return MergeAdjacent(vma_handle);
|
|
}
|
|
|
|
ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
|
|
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
|
|
const VAddr target_end = target + size;
|
|
|
|
const VMAIter end = vma_map.end();
|
|
// The comparison against the end of the range must be done using addresses since VMAs can be
|
|
// merged during this process, causing invalidation of the iterators.
|
|
while (vma != end && vma->second.base < target_end) {
|
|
vma = std::next(Unmap(vma));
|
|
}
|
|
|
|
ASSERT(FindVMA(target)->second.size >= size);
|
|
|
|
auto& system = Core::System::GetInstance();
|
|
system.ArmInterface(0).UnmapMemory(target, size);
|
|
system.ArmInterface(1).UnmapMemory(target, size);
|
|
system.ArmInterface(2).UnmapMemory(target, size);
|
|
system.ArmInterface(3).UnmapMemory(target, size);
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission new_perms) {
|
|
VMAIter iter = StripIterConstness(vma_handle);
|
|
|
|
VirtualMemoryArea& vma = iter->second;
|
|
vma.permissions = new_perms;
|
|
UpdatePageTableForVMA(vma);
|
|
|
|
return MergeAdjacent(iter);
|
|
}
|
|
|
|
ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) {
|
|
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
|
|
const VAddr target_end = target + size;
|
|
|
|
const VMAIter end = vma_map.end();
|
|
// The comparison against the end of the range must be done using addresses since VMAs can be
|
|
// merged during this process, causing invalidation of the iterators.
|
|
while (vma != end && vma->second.base < target_end) {
|
|
vma = std::next(StripIterConstness(Reprotect(vma, new_perms)));
|
|
}
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultVal<VAddr> VMManager::HeapAllocate(VAddr target, u64 size, VMAPermission perms) {
|
|
if (!IsWithinHeapRegion(target, size)) {
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
if (heap_memory == nullptr) {
|
|
// Initialize heap
|
|
heap_memory = std::make_shared<std::vector<u8>>();
|
|
heap_start = heap_end = target;
|
|
} else {
|
|
UnmapRange(heap_start, heap_end - heap_start);
|
|
}
|
|
|
|
// If necessary, expand backing vector to cover new heap extents.
|
|
if (target < heap_start) {
|
|
heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
|
|
heap_start = target;
|
|
RefreshMemoryBlockMappings(heap_memory.get());
|
|
}
|
|
if (target + size > heap_end) {
|
|
heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
|
|
heap_end = target + size;
|
|
RefreshMemoryBlockMappings(heap_memory.get());
|
|
}
|
|
ASSERT(heap_end - heap_start == heap_memory->size());
|
|
|
|
CASCADE_RESULT(auto vma, MapMemoryBlock(target, heap_memory, target - heap_start, size,
|
|
MemoryState::Heap));
|
|
Reprotect(vma, perms);
|
|
|
|
heap_used = size;
|
|
|
|
return MakeResult<VAddr>(heap_end - size);
|
|
}
|
|
|
|
ResultCode VMManager::HeapFree(VAddr target, u64 size) {
|
|
if (!IsWithinHeapRegion(target, size)) {
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
if (size == 0) {
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
const ResultCode result = UnmapRange(target, size);
|
|
if (result.IsError()) {
|
|
return result;
|
|
}
|
|
|
|
heap_used -= size;
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
MemoryInfo VMManager::QueryMemory(VAddr address) const {
|
|
const auto vma = FindVMA(address);
|
|
MemoryInfo memory_info{};
|
|
|
|
if (IsValidHandle(vma)) {
|
|
memory_info.base_address = vma->second.base;
|
|
memory_info.attributes = ToSvcMemoryAttribute(vma->second.attribute);
|
|
memory_info.permission = static_cast<u32>(vma->second.permissions);
|
|
memory_info.size = vma->second.size;
|
|
memory_info.state = ToSvcMemoryState(vma->second.state);
|
|
} else {
|
|
memory_info.base_address = address_space_end;
|
|
memory_info.permission = static_cast<u32>(VMAPermission::None);
|
|
memory_info.size = 0 - address_space_end;
|
|
memory_info.state = static_cast<u32>(MemoryState::Inaccessible);
|
|
}
|
|
|
|
return memory_info;
|
|
}
|
|
|
|
ResultCode VMManager::SetMemoryAttribute(VAddr address, u64 size, MemoryAttribute mask,
|
|
MemoryAttribute attribute) {
|
|
constexpr auto ignore_mask = MemoryAttribute::Uncached | MemoryAttribute::DeviceMapped;
|
|
constexpr auto attribute_mask = ~ignore_mask;
|
|
|
|
const auto result = CheckRangeState(
|
|
address, size, MemoryState::FlagUncached, MemoryState::FlagUncached, VMAPermission::None,
|
|
VMAPermission::None, attribute_mask, MemoryAttribute::None, ignore_mask);
|
|
|
|
if (result.Failed()) {
|
|
return result.Code();
|
|
}
|
|
|
|
const auto [prev_state, prev_permissions, prev_attributes] = *result;
|
|
const auto new_attribute = (prev_attributes & ~mask) | (mask & attribute);
|
|
|
|
const auto carve_result = CarveVMARange(address, size);
|
|
if (carve_result.Failed()) {
|
|
return carve_result.Code();
|
|
}
|
|
|
|
auto vma_iter = *carve_result;
|
|
vma_iter->second.attribute = new_attribute;
|
|
|
|
MergeAdjacent(vma_iter);
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
ResultCode VMManager::MirrorMemory(VAddr dst_addr, VAddr src_addr, u64 size, MemoryState state) {
|
|
const auto vma = FindVMA(src_addr);
|
|
|
|
ASSERT_MSG(vma != vma_map.end(), "Invalid memory address");
|
|
ASSERT_MSG(vma->second.backing_block, "Backing block doesn't exist for address");
|
|
|
|
// The returned VMA might be a bigger one encompassing the desired address.
|
|
const auto vma_offset = src_addr - vma->first;
|
|
ASSERT_MSG(vma_offset + size <= vma->second.size,
|
|
"Shared memory exceeds bounds of mapped block");
|
|
|
|
const std::shared_ptr<std::vector<u8>>& backing_block = vma->second.backing_block;
|
|
const std::size_t backing_block_offset = vma->second.offset + vma_offset;
|
|
|
|
CASCADE_RESULT(auto new_vma,
|
|
MapMemoryBlock(dst_addr, backing_block, backing_block_offset, size, state));
|
|
// Protect mirror with permissions from old region
|
|
Reprotect(new_vma, vma->second.permissions);
|
|
// Remove permissions from old region
|
|
Reprotect(vma, VMAPermission::None);
|
|
|
|
return RESULT_SUCCESS;
|
|
}
|
|
|
|
void VMManager::RefreshMemoryBlockMappings(const std::vector<u8>* block) {
|
|
// If this ever proves to have a noticeable performance impact, allow users of the function to
|
|
// specify a specific range of addresses to limit the scan to.
|
|
for (const auto& p : vma_map) {
|
|
const VirtualMemoryArea& vma = p.second;
|
|
if (block == vma.backing_block.get()) {
|
|
UpdatePageTableForVMA(vma);
|
|
}
|
|
}
|
|
}
|
|
|
|
void VMManager::LogLayout() const {
|
|
for (const auto& p : vma_map) {
|
|
const VirtualMemoryArea& vma = p.second;
|
|
LOG_DEBUG(Kernel, "{:016X} - {:016X} size: {:016X} {}{}{} {}", vma.base,
|
|
vma.base + vma.size, vma.size,
|
|
(u8)vma.permissions & (u8)VMAPermission::Read ? 'R' : '-',
|
|
(u8)vma.permissions & (u8)VMAPermission::Write ? 'W' : '-',
|
|
(u8)vma.permissions & (u8)VMAPermission::Execute ? 'X' : '-',
|
|
GetMemoryStateName(vma.state));
|
|
}
|
|
}
|
|
|
|
VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) {
|
|
// This uses a neat C++ trick to convert a const_iterator to a regular iterator, given
|
|
// non-const access to its container.
|
|
return vma_map.erase(iter, iter); // Erases an empty range of elements
|
|
}
|
|
|
|
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u64 size) {
|
|
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
|
|
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", base);
|
|
|
|
VMAIter vma_handle = StripIterConstness(FindVMA(base));
|
|
if (vma_handle == vma_map.end()) {
|
|
// Target address is outside the range managed by the kernel
|
|
return ERR_INVALID_ADDRESS;
|
|
}
|
|
|
|
const VirtualMemoryArea& vma = vma_handle->second;
|
|
if (vma.type != VMAType::Free) {
|
|
// Region is already allocated
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
const VAddr start_in_vma = base - vma.base;
|
|
const VAddr end_in_vma = start_in_vma + size;
|
|
|
|
if (end_in_vma > vma.size) {
|
|
// Requested allocation doesn't fit inside VMA
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
if (end_in_vma != vma.size) {
|
|
// Split VMA at the end of the allocated region
|
|
SplitVMA(vma_handle, end_in_vma);
|
|
}
|
|
if (start_in_vma != 0) {
|
|
// Split VMA at the start of the allocated region
|
|
vma_handle = SplitVMA(vma_handle, start_in_vma);
|
|
}
|
|
|
|
return MakeResult<VMAIter>(vma_handle);
|
|
}
|
|
|
|
ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u64 size) {
|
|
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x{:016X}", size);
|
|
ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x{:016X}", target);
|
|
|
|
const VAddr target_end = target + size;
|
|
ASSERT(target_end >= target);
|
|
ASSERT(target_end <= address_space_end);
|
|
ASSERT(size > 0);
|
|
|
|
VMAIter begin_vma = StripIterConstness(FindVMA(target));
|
|
const VMAIter i_end = vma_map.lower_bound(target_end);
|
|
if (std::any_of(begin_vma, i_end,
|
|
[](const auto& entry) { return entry.second.type == VMAType::Free; })) {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
if (target != begin_vma->second.base) {
|
|
begin_vma = SplitVMA(begin_vma, target - begin_vma->second.base);
|
|
}
|
|
|
|
VMAIter end_vma = StripIterConstness(FindVMA(target_end));
|
|
if (end_vma != vma_map.end() && target_end != end_vma->second.base) {
|
|
end_vma = SplitVMA(end_vma, target_end - end_vma->second.base);
|
|
}
|
|
|
|
return MakeResult<VMAIter>(begin_vma);
|
|
}
|
|
|
|
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
|
|
VirtualMemoryArea& old_vma = vma_handle->second;
|
|
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA
|
|
|
|
// For now, don't allow no-op VMA splits (trying to split at a boundary) because it's probably
|
|
// a bug. This restriction might be removed later.
|
|
ASSERT(offset_in_vma < old_vma.size);
|
|
ASSERT(offset_in_vma > 0);
|
|
|
|
old_vma.size = offset_in_vma;
|
|
new_vma.base += offset_in_vma;
|
|
new_vma.size -= offset_in_vma;
|
|
|
|
switch (new_vma.type) {
|
|
case VMAType::Free:
|
|
break;
|
|
case VMAType::AllocatedMemoryBlock:
|
|
new_vma.offset += offset_in_vma;
|
|
break;
|
|
case VMAType::BackingMemory:
|
|
new_vma.backing_memory += offset_in_vma;
|
|
break;
|
|
case VMAType::MMIO:
|
|
new_vma.paddr += offset_in_vma;
|
|
break;
|
|
}
|
|
|
|
ASSERT(old_vma.CanBeMergedWith(new_vma));
|
|
|
|
return vma_map.emplace_hint(std::next(vma_handle), new_vma.base, new_vma);
|
|
}
|
|
|
|
VMManager::VMAIter VMManager::MergeAdjacent(VMAIter iter) {
|
|
const VMAIter next_vma = std::next(iter);
|
|
if (next_vma != vma_map.end() && iter->second.CanBeMergedWith(next_vma->second)) {
|
|
iter->second.size += next_vma->second.size;
|
|
vma_map.erase(next_vma);
|
|
}
|
|
|
|
if (iter != vma_map.begin()) {
|
|
VMAIter prev_vma = std::prev(iter);
|
|
if (prev_vma->second.CanBeMergedWith(iter->second)) {
|
|
prev_vma->second.size += iter->second.size;
|
|
vma_map.erase(iter);
|
|
iter = prev_vma;
|
|
}
|
|
}
|
|
|
|
return iter;
|
|
}
|
|
|
|
void VMManager::UpdatePageTableForVMA(const VirtualMemoryArea& vma) {
|
|
switch (vma.type) {
|
|
case VMAType::Free:
|
|
Memory::UnmapRegion(page_table, vma.base, vma.size);
|
|
break;
|
|
case VMAType::AllocatedMemoryBlock:
|
|
Memory::MapMemoryRegion(page_table, vma.base, vma.size,
|
|
vma.backing_block->data() + vma.offset);
|
|
break;
|
|
case VMAType::BackingMemory:
|
|
Memory::MapMemoryRegion(page_table, vma.base, vma.size, vma.backing_memory);
|
|
break;
|
|
case VMAType::MMIO:
|
|
Memory::MapIoRegion(page_table, vma.base, vma.size, vma.mmio_handler);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void VMManager::InitializeMemoryRegionRanges(FileSys::ProgramAddressSpaceType type) {
|
|
u64 map_region_size = 0;
|
|
u64 heap_region_size = 0;
|
|
u64 new_map_region_size = 0;
|
|
u64 tls_io_region_size = 0;
|
|
|
|
switch (type) {
|
|
case FileSys::ProgramAddressSpaceType::Is32Bit:
|
|
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
|
|
address_space_width = 32;
|
|
code_region_base = 0x200000;
|
|
code_region_end = code_region_base + 0x3FE00000;
|
|
aslr_region_base = 0x200000;
|
|
aslr_region_end = aslr_region_base + 0xFFE00000;
|
|
if (type == FileSys::ProgramAddressSpaceType::Is32Bit) {
|
|
map_region_size = 0x40000000;
|
|
heap_region_size = 0x40000000;
|
|
} else {
|
|
map_region_size = 0;
|
|
heap_region_size = 0x80000000;
|
|
}
|
|
break;
|
|
case FileSys::ProgramAddressSpaceType::Is36Bit:
|
|
address_space_width = 36;
|
|
code_region_base = 0x8000000;
|
|
code_region_end = code_region_base + 0x78000000;
|
|
aslr_region_base = 0x8000000;
|
|
aslr_region_end = aslr_region_base + 0xFF8000000;
|
|
map_region_size = 0x180000000;
|
|
heap_region_size = 0x180000000;
|
|
break;
|
|
case FileSys::ProgramAddressSpaceType::Is39Bit:
|
|
address_space_width = 39;
|
|
code_region_base = 0x8000000;
|
|
code_region_end = code_region_base + 0x80000000;
|
|
aslr_region_base = 0x8000000;
|
|
aslr_region_end = aslr_region_base + 0x7FF8000000;
|
|
map_region_size = 0x1000000000;
|
|
heap_region_size = 0x180000000;
|
|
new_map_region_size = 0x80000000;
|
|
tls_io_region_size = 0x1000000000;
|
|
break;
|
|
default:
|
|
UNREACHABLE_MSG("Invalid address space type specified: {}", static_cast<u32>(type));
|
|
return;
|
|
}
|
|
|
|
address_space_base = 0;
|
|
address_space_end = 1ULL << address_space_width;
|
|
|
|
map_region_base = code_region_end;
|
|
map_region_end = map_region_base + map_region_size;
|
|
|
|
heap_region_base = map_region_end;
|
|
heap_region_end = heap_region_base + heap_region_size;
|
|
|
|
new_map_region_base = heap_region_end;
|
|
new_map_region_end = new_map_region_base + new_map_region_size;
|
|
|
|
tls_io_region_base = new_map_region_end;
|
|
tls_io_region_end = tls_io_region_base + tls_io_region_size;
|
|
|
|
if (new_map_region_size == 0) {
|
|
new_map_region_base = address_space_base;
|
|
new_map_region_end = address_space_end;
|
|
}
|
|
}
|
|
|
|
void VMManager::Clear() {
|
|
ClearVMAMap();
|
|
ClearPageTable();
|
|
}
|
|
|
|
void VMManager::ClearVMAMap() {
|
|
vma_map.clear();
|
|
}
|
|
|
|
void VMManager::ClearPageTable() {
|
|
std::fill(page_table.pointers.begin(), page_table.pointers.end(), nullptr);
|
|
page_table.special_regions.clear();
|
|
std::fill(page_table.attributes.begin(), page_table.attributes.end(),
|
|
Memory::PageType::Unmapped);
|
|
}
|
|
|
|
VMManager::CheckResults VMManager::CheckRangeState(VAddr address, u64 size, MemoryState state_mask,
|
|
MemoryState state, VMAPermission permission_mask,
|
|
VMAPermission permissions,
|
|
MemoryAttribute attribute_mask,
|
|
MemoryAttribute attribute,
|
|
MemoryAttribute ignore_mask) const {
|
|
auto iter = FindVMA(address);
|
|
|
|
// If we don't have a valid VMA handle at this point, then it means this is
|
|
// being called with an address outside of the address space, which is definitely
|
|
// indicative of a bug, as this function only operates on mapped memory regions.
|
|
DEBUG_ASSERT(IsValidHandle(iter));
|
|
|
|
const VAddr end_address = address + size - 1;
|
|
const MemoryAttribute initial_attributes = iter->second.attribute;
|
|
const VMAPermission initial_permissions = iter->second.permissions;
|
|
const MemoryState initial_state = iter->second.state;
|
|
|
|
while (true) {
|
|
// The iterator should be valid throughout the traversal. Hitting the end of
|
|
// the mapped VMA regions is unquestionably indicative of a bug.
|
|
DEBUG_ASSERT(IsValidHandle(iter));
|
|
|
|
const auto& vma = iter->second;
|
|
|
|
if (vma.state != initial_state) {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
if ((vma.state & state_mask) != state) {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
if (vma.permissions != initial_permissions) {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
if ((vma.permissions & permission_mask) != permissions) {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
if ((vma.attribute | ignore_mask) != (initial_attributes | ignore_mask)) {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
if ((vma.attribute & attribute_mask) != attribute) {
|
|
return ERR_INVALID_ADDRESS_STATE;
|
|
}
|
|
|
|
if (end_address <= vma.EndAddress()) {
|
|
break;
|
|
}
|
|
|
|
++iter;
|
|
}
|
|
|
|
return MakeResult(
|
|
std::make_tuple(initial_state, initial_permissions, initial_attributes & ~ignore_mask));
|
|
}
|
|
|
|
u64 VMManager::GetTotalMemoryUsage() const {
|
|
LOG_WARNING(Kernel, "(STUBBED) called");
|
|
return 0xF8000000;
|
|
}
|
|
|
|
u64 VMManager::GetTotalHeapUsage() const {
|
|
return heap_used;
|
|
}
|
|
|
|
VAddr VMManager::GetAddressSpaceBaseAddress() const {
|
|
return address_space_base;
|
|
}
|
|
|
|
VAddr VMManager::GetAddressSpaceEndAddress() const {
|
|
return address_space_end;
|
|
}
|
|
|
|
u64 VMManager::GetAddressSpaceSize() const {
|
|
return address_space_end - address_space_base;
|
|
}
|
|
|
|
u64 VMManager::GetAddressSpaceWidth() const {
|
|
return address_space_width;
|
|
}
|
|
|
|
bool VMManager::IsWithinAddressSpace(VAddr address, u64 size) const {
|
|
return IsInsideAddressRange(address, size, GetAddressSpaceBaseAddress(),
|
|
GetAddressSpaceEndAddress());
|
|
}
|
|
|
|
VAddr VMManager::GetASLRRegionBaseAddress() const {
|
|
return aslr_region_base;
|
|
}
|
|
|
|
VAddr VMManager::GetASLRRegionEndAddress() const {
|
|
return aslr_region_end;
|
|
}
|
|
|
|
u64 VMManager::GetASLRRegionSize() const {
|
|
return aslr_region_end - aslr_region_base;
|
|
}
|
|
|
|
bool VMManager::IsWithinASLRRegion(VAddr begin, u64 size) const {
|
|
const VAddr range_end = begin + size;
|
|
const VAddr aslr_start = GetASLRRegionBaseAddress();
|
|
const VAddr aslr_end = GetASLRRegionEndAddress();
|
|
|
|
if (aslr_start > begin || begin > range_end || range_end - 1 > aslr_end - 1) {
|
|
return false;
|
|
}
|
|
|
|
if (range_end > heap_region_base && heap_region_end > begin) {
|
|
return false;
|
|
}
|
|
|
|
if (range_end > map_region_base && map_region_end > begin) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
VAddr VMManager::GetCodeRegionBaseAddress() const {
|
|
return code_region_base;
|
|
}
|
|
|
|
VAddr VMManager::GetCodeRegionEndAddress() const {
|
|
return code_region_end;
|
|
}
|
|
|
|
u64 VMManager::GetCodeRegionSize() const {
|
|
return code_region_end - code_region_base;
|
|
}
|
|
|
|
bool VMManager::IsWithinCodeRegion(VAddr address, u64 size) const {
|
|
return IsInsideAddressRange(address, size, GetCodeRegionBaseAddress(),
|
|
GetCodeRegionEndAddress());
|
|
}
|
|
|
|
VAddr VMManager::GetHeapRegionBaseAddress() const {
|
|
return heap_region_base;
|
|
}
|
|
|
|
VAddr VMManager::GetHeapRegionEndAddress() const {
|
|
return heap_region_end;
|
|
}
|
|
|
|
u64 VMManager::GetHeapRegionSize() const {
|
|
return heap_region_end - heap_region_base;
|
|
}
|
|
|
|
bool VMManager::IsWithinHeapRegion(VAddr address, u64 size) const {
|
|
return IsInsideAddressRange(address, size, GetHeapRegionBaseAddress(),
|
|
GetHeapRegionEndAddress());
|
|
}
|
|
|
|
VAddr VMManager::GetMapRegionBaseAddress() const {
|
|
return map_region_base;
|
|
}
|
|
|
|
VAddr VMManager::GetMapRegionEndAddress() const {
|
|
return map_region_end;
|
|
}
|
|
|
|
u64 VMManager::GetMapRegionSize() const {
|
|
return map_region_end - map_region_base;
|
|
}
|
|
|
|
bool VMManager::IsWithinMapRegion(VAddr address, u64 size) const {
|
|
return IsInsideAddressRange(address, size, GetMapRegionBaseAddress(), GetMapRegionEndAddress());
|
|
}
|
|
|
|
VAddr VMManager::GetNewMapRegionBaseAddress() const {
|
|
return new_map_region_base;
|
|
}
|
|
|
|
VAddr VMManager::GetNewMapRegionEndAddress() const {
|
|
return new_map_region_end;
|
|
}
|
|
|
|
u64 VMManager::GetNewMapRegionSize() const {
|
|
return new_map_region_end - new_map_region_base;
|
|
}
|
|
|
|
bool VMManager::IsWithinNewMapRegion(VAddr address, u64 size) const {
|
|
return IsInsideAddressRange(address, size, GetNewMapRegionBaseAddress(),
|
|
GetNewMapRegionEndAddress());
|
|
}
|
|
|
|
VAddr VMManager::GetTLSIORegionBaseAddress() const {
|
|
return tls_io_region_base;
|
|
}
|
|
|
|
VAddr VMManager::GetTLSIORegionEndAddress() const {
|
|
return tls_io_region_end;
|
|
}
|
|
|
|
u64 VMManager::GetTLSIORegionSize() const {
|
|
return tls_io_region_end - tls_io_region_base;
|
|
}
|
|
|
|
bool VMManager::IsWithinTLSIORegion(VAddr address, u64 size) const {
|
|
return IsInsideAddressRange(address, size, GetTLSIORegionBaseAddress(),
|
|
GetTLSIORegionEndAddress());
|
|
}
|
|
|
|
} // namespace Kernel
|