mirror of
https://gitlab.com/suyu-emu/suyu.git
synced 2024-03-15 23:15:44 +00:00
2665457f4a
All calling code assumes that the rasterizer will be in a valid state, which is a totally fine assumption. The only way the rasterizer wouldn't be is if initialization is done incorrectly or fails, which is checked against in System::Init().
594 lines
21 KiB
C++
594 lines
21 KiB
C++
// Copyright 2015 Citra Emulator Project
|
|
// Licensed under GPLv2 or any later version
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cstring>
|
|
#include <utility>
|
|
|
|
#include <boost/optional.hpp>
|
|
#include "common/assert.h"
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/swap.h"
|
|
#include "core/arm/arm_interface.h"
|
|
#include "core/core.h"
|
|
#include "core/hle/kernel/process.h"
|
|
#include "core/hle/lock.h"
|
|
#include "core/memory.h"
|
|
#include "core/memory_setup.h"
|
|
#include "video_core/renderer_base.h"
|
|
#include "video_core/video_core.h"
|
|
|
|
namespace Memory {
|
|
|
|
static PageTable* current_page_table = nullptr;
|
|
|
|
void SetCurrentPageTable(PageTable* page_table) {
|
|
current_page_table = page_table;
|
|
|
|
auto& system = Core::System::GetInstance();
|
|
if (system.IsPoweredOn()) {
|
|
system.ArmInterface(0).PageTableChanged();
|
|
system.ArmInterface(1).PageTableChanged();
|
|
system.ArmInterface(2).PageTableChanged();
|
|
system.ArmInterface(3).PageTableChanged();
|
|
}
|
|
}
|
|
|
|
PageTable* GetCurrentPageTable() {
|
|
return current_page_table;
|
|
}
|
|
|
|
static void MapPages(PageTable& page_table, VAddr base, u64 size, u8* memory, PageType type) {
|
|
LOG_DEBUG(HW_Memory, "Mapping {} onto {:016X}-{:016X}", fmt::ptr(memory), base * PAGE_SIZE,
|
|
(base + size) * PAGE_SIZE);
|
|
|
|
RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE,
|
|
FlushMode::FlushAndInvalidate);
|
|
|
|
VAddr end = base + size;
|
|
while (base != end) {
|
|
ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at {:016X}", base);
|
|
|
|
page_table.attributes[base] = type;
|
|
page_table.pointers[base] = memory;
|
|
|
|
base += 1;
|
|
if (memory != nullptr)
|
|
memory += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
void MapMemoryRegion(PageTable& page_table, VAddr base, u64 size, u8* target) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base);
|
|
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
|
|
}
|
|
|
|
void MapIoRegion(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer mmio_handler) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base);
|
|
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
|
|
|
|
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
|
|
SpecialRegion region{SpecialRegion::Type::IODevice, std::move(mmio_handler)};
|
|
page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region}));
|
|
}
|
|
|
|
void UnmapRegion(PageTable& page_table, VAddr base, u64 size) {
|
|
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: {:016X}", size);
|
|
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: {:016X}", base);
|
|
MapPages(page_table, base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
|
|
|
|
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
|
|
page_table.special_regions.erase(interval);
|
|
}
|
|
|
|
void AddDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) {
|
|
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
|
|
SpecialRegion region{SpecialRegion::Type::DebugHook, std::move(hook)};
|
|
page_table.special_regions.add(std::make_pair(interval, std::set<SpecialRegion>{region}));
|
|
}
|
|
|
|
void RemoveDebugHook(PageTable& page_table, VAddr base, u64 size, MemoryHookPointer hook) {
|
|
auto interval = boost::icl::discrete_interval<VAddr>::closed(base, base + size - 1);
|
|
SpecialRegion region{SpecialRegion::Type::DebugHook, std::move(hook)};
|
|
page_table.special_regions.subtract(std::make_pair(interval, std::set<SpecialRegion>{region}));
|
|
}
|
|
|
|
/**
|
|
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
|
|
* using a VMA from the current process
|
|
*/
|
|
static u8* GetPointerFromVMA(const Kernel::Process& process, VAddr vaddr) {
|
|
u8* direct_pointer = nullptr;
|
|
|
|
auto& vm_manager = process.vm_manager;
|
|
|
|
auto it = vm_manager.FindVMA(vaddr);
|
|
ASSERT(it != vm_manager.vma_map.end());
|
|
|
|
auto& vma = it->second;
|
|
switch (vma.type) {
|
|
case Kernel::VMAType::AllocatedMemoryBlock:
|
|
direct_pointer = vma.backing_block->data() + vma.offset;
|
|
break;
|
|
case Kernel::VMAType::BackingMemory:
|
|
direct_pointer = vma.backing_memory;
|
|
break;
|
|
case Kernel::VMAType::Free:
|
|
return nullptr;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
return direct_pointer + (vaddr - vma.base);
|
|
}
|
|
|
|
/**
|
|
* Gets a pointer to the exact memory at the virtual address (i.e. not page aligned)
|
|
* using a VMA from the current process.
|
|
*/
|
|
static u8* GetPointerFromVMA(VAddr vaddr) {
|
|
return GetPointerFromVMA(*Core::CurrentProcess(), vaddr);
|
|
}
|
|
|
|
template <typename T>
|
|
T Read(const VAddr vaddr) {
|
|
const u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
T value;
|
|
std::memcpy(&value, &page_pointer[vaddr & PAGE_MASK], sizeof(T));
|
|
return value;
|
|
}
|
|
|
|
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
|
|
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
|
|
|
|
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
switch (type) {
|
|
case PageType::Unmapped:
|
|
LOG_ERROR(HW_Memory, "Unmapped Read{} @ 0x{:08X}", sizeof(T) * 8, vaddr);
|
|
return 0;
|
|
case PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
|
|
break;
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Flush);
|
|
|
|
T value;
|
|
std::memcpy(&value, GetPointerFromVMA(vaddr), sizeof(T));
|
|
return value;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Write(const VAddr vaddr, const T data) {
|
|
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
// NOTE: Avoid adding any extra logic to this fast-path block
|
|
std::memcpy(&page_pointer[vaddr & PAGE_MASK], &data, sizeof(T));
|
|
return;
|
|
}
|
|
|
|
// The memory access might do an MMIO or cached access, so we have to lock the HLE kernel state
|
|
std::lock_guard<std::recursive_mutex> lock(HLE::g_hle_lock);
|
|
|
|
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
switch (type) {
|
|
case PageType::Unmapped:
|
|
LOG_ERROR(HW_Memory, "Unmapped Write{} 0x{:08X} @ 0x{:016X}", sizeof(data) * 8,
|
|
static_cast<u32>(data), vaddr);
|
|
return;
|
|
case PageType::Memory:
|
|
ASSERT_MSG(false, "Mapped memory page without a pointer @ {:016X}", vaddr);
|
|
break;
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(vaddr, sizeof(T), FlushMode::Invalidate);
|
|
std::memcpy(GetPointerFromVMA(vaddr), &data, sizeof(T));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
bool IsValidVirtualAddress(const Kernel::Process& process, const VAddr vaddr) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
|
|
const u8* page_pointer = page_table.pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer)
|
|
return true;
|
|
|
|
if (page_table.attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory)
|
|
return true;
|
|
|
|
if (page_table.attributes[vaddr >> PAGE_BITS] != PageType::Special)
|
|
return false;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool IsValidVirtualAddress(const VAddr vaddr) {
|
|
return IsValidVirtualAddress(*Core::CurrentProcess(), vaddr);
|
|
}
|
|
|
|
bool IsKernelVirtualAddress(const VAddr vaddr) {
|
|
return KERNEL_REGION_VADDR <= vaddr && vaddr < KERNEL_REGION_END;
|
|
}
|
|
|
|
u8* GetPointer(const VAddr vaddr) {
|
|
u8* page_pointer = current_page_table->pointers[vaddr >> PAGE_BITS];
|
|
if (page_pointer) {
|
|
return page_pointer + (vaddr & PAGE_MASK);
|
|
}
|
|
|
|
if (current_page_table->attributes[vaddr >> PAGE_BITS] == PageType::RasterizerCachedMemory) {
|
|
return GetPointerFromVMA(vaddr);
|
|
}
|
|
|
|
LOG_ERROR(HW_Memory, "Unknown GetPointer @ 0x{:016X}", vaddr);
|
|
return nullptr;
|
|
}
|
|
|
|
std::string ReadCString(VAddr vaddr, std::size_t max_length) {
|
|
std::string string;
|
|
string.reserve(max_length);
|
|
for (std::size_t i = 0; i < max_length; ++i) {
|
|
char c = Read8(vaddr);
|
|
if (c == '\0')
|
|
break;
|
|
string.push_back(c);
|
|
++vaddr;
|
|
}
|
|
string.shrink_to_fit();
|
|
return string;
|
|
}
|
|
|
|
void RasterizerMarkRegionCached(Tegra::GPUVAddr gpu_addr, u64 size, bool cached) {
|
|
if (gpu_addr == 0) {
|
|
return;
|
|
}
|
|
|
|
// Iterate over a contiguous CPU address space, which corresponds to the specified GPU address
|
|
// space, marking the region as un/cached. The region is marked un/cached at a granularity of
|
|
// CPU pages, hence why we iterate on a CPU page basis (note: GPU page size is different). This
|
|
// assumes the specified GPU address region is contiguous as well.
|
|
|
|
u64 num_pages = ((gpu_addr + size - 1) >> PAGE_BITS) - (gpu_addr >> PAGE_BITS) + 1;
|
|
for (unsigned i = 0; i < num_pages; ++i, gpu_addr += PAGE_SIZE) {
|
|
boost::optional<VAddr> maybe_vaddr =
|
|
Core::System::GetInstance().GPU().memory_manager->GpuToCpuAddress(gpu_addr);
|
|
// The GPU <-> CPU virtual memory mapping is not 1:1
|
|
if (!maybe_vaddr) {
|
|
LOG_ERROR(HW_Memory,
|
|
"Trying to flush a cached region to an invalid physical address {:016X}",
|
|
gpu_addr);
|
|
continue;
|
|
}
|
|
VAddr vaddr = *maybe_vaddr;
|
|
|
|
PageType& page_type = current_page_table->attributes[vaddr >> PAGE_BITS];
|
|
|
|
if (cached) {
|
|
// Switch page type to cached if now cached
|
|
switch (page_type) {
|
|
case PageType::Unmapped:
|
|
// It is not necessary for a process to have this region mapped into its address
|
|
// space, for example, a system module need not have a VRAM mapping.
|
|
break;
|
|
case PageType::Memory:
|
|
page_type = PageType::RasterizerCachedMemory;
|
|
current_page_table->pointers[vaddr >> PAGE_BITS] = nullptr;
|
|
break;
|
|
case PageType::RasterizerCachedMemory:
|
|
// There can be more than one GPU region mapped per CPU region, so it's common that
|
|
// this area is already marked as cached.
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
// Switch page type to uncached if now uncached
|
|
switch (page_type) {
|
|
case PageType::Unmapped:
|
|
// It is not necessary for a process to have this region mapped into its address
|
|
// space, for example, a system module need not have a VRAM mapping.
|
|
break;
|
|
case PageType::Memory:
|
|
// There can be more than one GPU region mapped per CPU region, so it's common that
|
|
// this area is already unmarked as cached.
|
|
break;
|
|
case PageType::RasterizerCachedMemory: {
|
|
u8* pointer = GetPointerFromVMA(vaddr & ~PAGE_MASK);
|
|
if (pointer == nullptr) {
|
|
// It's possible that this function has been called while updating the pagetable
|
|
// after unmapping a VMA. In that case the underlying VMA will no longer exist,
|
|
// and we should just leave the pagetable entry blank.
|
|
page_type = PageType::Unmapped;
|
|
} else {
|
|
page_type = PageType::Memory;
|
|
current_page_table->pointers[vaddr >> PAGE_BITS] = pointer;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
|
|
auto& system_instance = Core::System::GetInstance();
|
|
|
|
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
|
|
// null here
|
|
if (!system_instance.IsPoweredOn()) {
|
|
return;
|
|
}
|
|
|
|
VAddr end = start + size;
|
|
|
|
const auto CheckRegion = [&](VAddr region_start, VAddr region_end) {
|
|
if (start >= region_end || end <= region_start) {
|
|
// No overlap with region
|
|
return;
|
|
}
|
|
|
|
const VAddr overlap_start = std::max(start, region_start);
|
|
const VAddr overlap_end = std::min(end, region_end);
|
|
|
|
const std::vector<Tegra::GPUVAddr> gpu_addresses =
|
|
system_instance.GPU().memory_manager->CpuToGpuAddress(overlap_start);
|
|
|
|
if (gpu_addresses.empty()) {
|
|
return;
|
|
}
|
|
|
|
const u64 overlap_size = overlap_end - overlap_start;
|
|
|
|
for (const auto& gpu_address : gpu_addresses) {
|
|
auto& rasterizer = system_instance.Renderer().Rasterizer();
|
|
switch (mode) {
|
|
case FlushMode::Flush:
|
|
rasterizer.FlushRegion(gpu_address, overlap_size);
|
|
break;
|
|
case FlushMode::Invalidate:
|
|
rasterizer.InvalidateRegion(gpu_address, overlap_size);
|
|
break;
|
|
case FlushMode::FlushAndInvalidate:
|
|
rasterizer.FlushAndInvalidateRegion(gpu_address, overlap_size);
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
CheckRegion(PROCESS_IMAGE_VADDR, PROCESS_IMAGE_VADDR_END);
|
|
CheckRegion(HEAP_VADDR, HEAP_VADDR_END);
|
|
}
|
|
|
|
u8 Read8(const VAddr addr) {
|
|
return Read<u8>(addr);
|
|
}
|
|
|
|
u16 Read16(const VAddr addr) {
|
|
return Read<u16_le>(addr);
|
|
}
|
|
|
|
u32 Read32(const VAddr addr) {
|
|
return Read<u32_le>(addr);
|
|
}
|
|
|
|
u64 Read64(const VAddr addr) {
|
|
return Read<u64_le>(addr);
|
|
}
|
|
|
|
void ReadBlock(const Kernel::Process& process, const VAddr src_addr, void* dest_buffer,
|
|
const size_t size) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
|
|
size_t remaining_size = size;
|
|
size_t page_index = src_addr >> PAGE_BITS;
|
|
size_t page_offset = src_addr & PAGE_MASK;
|
|
|
|
while (remaining_size > 0) {
|
|
const size_t copy_amount =
|
|
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
|
|
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
|
|
|
|
switch (page_table.attributes[page_index]) {
|
|
case PageType::Unmapped: {
|
|
LOG_ERROR(HW_Memory,
|
|
"Unmapped ReadBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
|
|
current_vaddr, src_addr, size);
|
|
std::memset(dest_buffer, 0, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::Memory: {
|
|
DEBUG_ASSERT(page_table.pointers[page_index]);
|
|
|
|
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
|
|
std::memcpy(dest_buffer, src_ptr, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
|
|
FlushMode::Flush);
|
|
std::memcpy(dest_buffer, GetPointerFromVMA(process, current_vaddr), copy_amount);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
dest_buffer = static_cast<u8*>(dest_buffer) + copy_amount;
|
|
remaining_size -= copy_amount;
|
|
}
|
|
}
|
|
|
|
void ReadBlock(const VAddr src_addr, void* dest_buffer, const size_t size) {
|
|
ReadBlock(*Core::CurrentProcess(), src_addr, dest_buffer, size);
|
|
}
|
|
|
|
void Write8(const VAddr addr, const u8 data) {
|
|
Write<u8>(addr, data);
|
|
}
|
|
|
|
void Write16(const VAddr addr, const u16 data) {
|
|
Write<u16_le>(addr, data);
|
|
}
|
|
|
|
void Write32(const VAddr addr, const u32 data) {
|
|
Write<u32_le>(addr, data);
|
|
}
|
|
|
|
void Write64(const VAddr addr, const u64 data) {
|
|
Write<u64_le>(addr, data);
|
|
}
|
|
|
|
void WriteBlock(const Kernel::Process& process, const VAddr dest_addr, const void* src_buffer,
|
|
const size_t size) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
size_t remaining_size = size;
|
|
size_t page_index = dest_addr >> PAGE_BITS;
|
|
size_t page_offset = dest_addr & PAGE_MASK;
|
|
|
|
while (remaining_size > 0) {
|
|
const size_t copy_amount =
|
|
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
|
|
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
|
|
|
|
switch (page_table.attributes[page_index]) {
|
|
case PageType::Unmapped: {
|
|
LOG_ERROR(HW_Memory,
|
|
"Unmapped WriteBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
|
|
current_vaddr, dest_addr, size);
|
|
break;
|
|
}
|
|
case PageType::Memory: {
|
|
DEBUG_ASSERT(page_table.pointers[page_index]);
|
|
|
|
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
|
|
std::memcpy(dest_ptr, src_buffer, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
|
|
FlushMode::Invalidate);
|
|
std::memcpy(GetPointerFromVMA(process, current_vaddr), src_buffer, copy_amount);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
src_buffer = static_cast<const u8*>(src_buffer) + copy_amount;
|
|
remaining_size -= copy_amount;
|
|
}
|
|
}
|
|
|
|
void WriteBlock(const VAddr dest_addr, const void* src_buffer, const size_t size) {
|
|
WriteBlock(*Core::CurrentProcess(), dest_addr, src_buffer, size);
|
|
}
|
|
|
|
void ZeroBlock(const Kernel::Process& process, const VAddr dest_addr, const size_t size) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
size_t remaining_size = size;
|
|
size_t page_index = dest_addr >> PAGE_BITS;
|
|
size_t page_offset = dest_addr & PAGE_MASK;
|
|
|
|
while (remaining_size > 0) {
|
|
const size_t copy_amount =
|
|
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
|
|
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
|
|
|
|
switch (page_table.attributes[page_index]) {
|
|
case PageType::Unmapped: {
|
|
LOG_ERROR(HW_Memory,
|
|
"Unmapped ZeroBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
|
|
current_vaddr, dest_addr, size);
|
|
break;
|
|
}
|
|
case PageType::Memory: {
|
|
DEBUG_ASSERT(page_table.pointers[page_index]);
|
|
|
|
u8* dest_ptr = page_table.pointers[page_index] + page_offset;
|
|
std::memset(dest_ptr, 0, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
|
|
FlushMode::Invalidate);
|
|
std::memset(GetPointerFromVMA(process, current_vaddr), 0, copy_amount);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
remaining_size -= copy_amount;
|
|
}
|
|
}
|
|
|
|
void CopyBlock(const Kernel::Process& process, VAddr dest_addr, VAddr src_addr, const size_t size) {
|
|
auto& page_table = process.vm_manager.page_table;
|
|
size_t remaining_size = size;
|
|
size_t page_index = src_addr >> PAGE_BITS;
|
|
size_t page_offset = src_addr & PAGE_MASK;
|
|
|
|
while (remaining_size > 0) {
|
|
const size_t copy_amount =
|
|
std::min(static_cast<size_t>(PAGE_SIZE) - page_offset, remaining_size);
|
|
const VAddr current_vaddr = static_cast<VAddr>((page_index << PAGE_BITS) + page_offset);
|
|
|
|
switch (page_table.attributes[page_index]) {
|
|
case PageType::Unmapped: {
|
|
LOG_ERROR(HW_Memory,
|
|
"Unmapped CopyBlock @ 0x{:016X} (start address = 0x{:016X}, size = {})",
|
|
current_vaddr, src_addr, size);
|
|
ZeroBlock(process, dest_addr, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::Memory: {
|
|
DEBUG_ASSERT(page_table.pointers[page_index]);
|
|
const u8* src_ptr = page_table.pointers[page_index] + page_offset;
|
|
WriteBlock(process, dest_addr, src_ptr, copy_amount);
|
|
break;
|
|
}
|
|
case PageType::RasterizerCachedMemory: {
|
|
RasterizerFlushVirtualRegion(current_vaddr, static_cast<u32>(copy_amount),
|
|
FlushMode::Flush);
|
|
WriteBlock(process, dest_addr, GetPointerFromVMA(process, current_vaddr), copy_amount);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
page_index++;
|
|
page_offset = 0;
|
|
dest_addr += static_cast<VAddr>(copy_amount);
|
|
src_addr += static_cast<VAddr>(copy_amount);
|
|
remaining_size -= copy_amount;
|
|
}
|
|
}
|
|
|
|
void CopyBlock(VAddr dest_addr, VAddr src_addr, size_t size) {
|
|
CopyBlock(*Core::CurrentProcess(), dest_addr, src_addr, size);
|
|
}
|
|
|
|
} // namespace Memory
|