This was implicitly done by `is_powered_on = false`, however the explicit method allows us to block until the GPU is actually gone.
This should fix a race condition while removing the other subsystems while the GPU is still active.
After rewriting the resource limit, objects releasing reserved resources require a live kernel instance.
This commit fixes exceptions that occur due to the kernel being destroyed before some objects released their resources, allowing for a graceful exit.
Removes all remaining usages of the global system instance. After this,
migration can begin to migrate to being constructed and managed entirely
by the various frontends.
Now all that remains is:
18 instances in file_sys code
14 instances in GDB stub code (this can be tossed wholesale)
4 instances in HLE code
2 instances in settings code.
Now that the GPU is initialized when video backends are initialized,
it's no longer needed to query components once the game is running: it
can be done when yuzu is booting.
This allows us to pass components between constructors and in the
process remove all Core::System references in the video backend.
Migrates a remaining common file over to the Common namespace, making it
consistent with the rest of common files.
This also allows for high-traffic FS related code to alias the
filesystem function namespace as
namespace FS = Common::FS;
for more concise typing.
This commit adds a network abstraction designed to implement bsd:s but
at the same time work as a generic abstraction to implement any
networking code we have to use from core.
This is implemented on top of BSD sockets on Unix systems and winsock on
Windows. The code is designed around winsocks having compatibility
definitions to support both BSD and Windows sockets.
* Switch game settings to use a pointer
In order to add full per-game settings, we need to be able to tell yuzu to switch
to using either the global or game configuration. Using a pointer makes it easier
to switch.
* configuration: add new UI without changing existing funcitonality
The new UI also adds General, System, Graphics, Advanced Graphics,
and Audio tabs, but as yet they do nothing. This commit keeps yuzu
to the same functionality as originally branched.
* configuration: Rename files
These weren't included in the last commit. Now they are.
* configuration: setup global configuration checkbox
Global config checkbox now enables/disables the appropriate tabs in the game
properties dialog. The use global configuration setting is now saved to the
config, defaulting to true. This also addresses some changes requested in the PR.
* configuration: swap to per-game config memory for properties dialog
Does not set memory going in-game. Swaps to game values when opening the
properties dialog, then swaps back when closing it. Uses a `memcpy` to swap.
Also implements saving config files, limited to certain groups of configurations
so as to not risk setting unsafe configurations.
* configuration: change config interfaces to use config-specific pointers
When a game is booted, we need to be able to open the configuration dialogs
without changing the settings pointer in the game's emualtion. A new pointer
specific to just the configuration dialogs can be used to separate changes
to just those config dialogs without affecting the emulation.
* configuration: boot a game using per-game settings
Swaps values where needed to boot a game.
* configuration: user correct config during emulation
Creates a new pointer specifically for modifying the configuration while
emulation is in progress. Both the regular configuration dialog and the game
properties dialog now use the pointer Settings::config_values to focus edits to
the correct struct.
* settings: split Settings::values into two different structs
By splitting the settings into two mutually exclusive structs, it becomes easier,
as a developer, to determine how to use the Settings structs after per-game
configurations is merged. Other benefits include only duplicating the required
settings in memory.
* settings: move use_docked_mode to Controls group
`use_docked_mode` is set in the input settings and cannot be accessed from the
system settings. Grouping it with system settings causes it to be saved with
per-game settings, which may make transferring configs more difficult later on,
especially since docked mode cannot be set from within the game properties
dialog.
* configuration: Fix the other yuzu executables and a regression
In main.cpp, we have to get the title ID before the ROM is loaded, else the
renderer will reflect only the global settings and now the user's game specific
settings.
* settings: use a template to duplicate memory for each setting
Replaces the type of each variable in the Settings::Values struct with a new
class that allows basic data reading and writing. The new struct
Settings::Setting duplicates the data in memory and can manage global overrides
per each setting.
* configuration: correct add-ons config and swap settings when apropriate
Any add-ons interaction happens directly through the global values struct.
Swapping bewteen structs now also includes copying the necessary global configs
that cannot be changed nor saved in per-game settings. General and System config
menus now update based on whether it is viewing the global or per-game settings.
* settings: restore old values struct
No longer needed with the Settings::Setting class template.
* configuration: implement hierarchical game properties dialog
This sets the apropriate global or local data in each setting.
* clang format
* clang format take 2
can the docker container save this?
* address comments and style issues
* config: read and write settings with global awareness
Adds new functions to read and write settings while keeping the global state in
focus. Files now generated per-game are much smaller since often they only need
address the global state.
* settings: restore global state when necessary
Upon closing a game or the game properties dialog, we need to restore all global
settings to the original global state so that we can properly open the
configuration dialog or boot a different game.
* configuration: guard setting values incorrectly
This disables setting values while a game is running if the setting is
overwritten by a per game setting.
* config: don't write local settings in the global config
Simple guards to prevent writing the wrong settings in the wrong files.
* configuration: add comments, assume less, and clang format
No longer assumes that a disabled UI element means the global state is turned
off, instead opting to directly answer that question. Still however assumes a
game is running if it is in that state.
* configuration: fix a logic error
Should not be negated
* restore settings' global state regardless of accept/cancel
Fixes loading a properties dialog and causing the global config dialog to show
local settings.
* fix more logic errors
Fixed the frame limit would set the global setting from the game properties
dialog. Also strengthened the Settings::Setting member variables and simplified
the logic in config reading (ReadSettingGlobal).
* fix another logic error
In my efforts to guard RestoreGlobalState, I accidentally negated the IsPowered
condition.
* configure_audio: set toggle_stretched_audio to tristate
* fixed custom rtc and rng seed overwriting the global value
* clang format
* rebased
* clang format take 4
* address my own review
Basically revert unintended changes
* settings: literal instead of casting
"No need to cast, use 1U instead"
Thanks, Morph!
Co-authored-by: Morph <39850852+Morph1984@users.noreply.github.com>
* Revert "settings: literal instead of casting
"
This reverts commit 95e992a87c898f3e882ffdb415bb0ef9f80f613f.
* main: fix status buttons reporting wrong settings after stop emulation
* settings: Log UseDockedMode in the Controls group
This should have happened when use_docked_mode was moved over to the controls group
internally. This just reflects this in the log.
* main: load settings if the file has a title id
In other words, don't exit if the loader has trouble getting a title id.
* use a zero
* settings: initalize resolution factor with constructor instead of casting
* Revert "settings: initalize resolution factor with constructor instead of casting"
This reverts commit 54c35ecb46a29953842614620f9b7de1aa9d5dc8.
* configure_graphics: guard device selector when Vulkan is global
Prevents the user from editing the device selector if Vulkan is the global
renderer backend. Also resets the vulkan_device variable when the users
switches back-and-forth between global and Vulkan.
* address reviewer concerns
Changes function variables to const wherever they don't need to be changed. Sets Settings::Setting to final as it should not be inherited from. Sets ConfigurationShared::use_global_text to static.
Co-Authored-By: VolcaEM <volcaem@users.noreply.github.com>
* main: load per-game settings after LoadROM
This prevents `Restart Emulation` from restoring the global settings *after* the per-game settings were applied. Thanks to BSoDGamingYT for finding this bug.
* Revert "main: load per-game settings after LoadROM"
This reverts commit 9d0d48c52d2dcf3bfb1806cc8fa7d5a271a8a804.
* main: only restore global settings when necessary
Loading the per-game settings cannot happen after the ROM is loaded, so we have to specify when to restore the global state. Again thanks to BSoD for finding the bug.
* configuration_shared: address reviewer concerns except operator overrides
Dropping operator override usage in next commit.
Co-Authored-By: LC <lioncash@users.noreply.github.com>
* settings: Drop operator overrides from Setting template
Requires using GetValue and SetValue explicitly. Also reverts a change that broke title ID formatting in the game properties dialog.
* complete rebase
* configuration_shared: translate "Use global configuration"
Uses ConfigurePerGame to do so, since its usage, at least as of now, corresponds with ConfigurationShared.
* configure_per_game: address reviewer concern
As far as I understand, it prevents the program from unnecessarily copying strings.
Co-Authored-By: LC <lioncash@users.noreply.github.com>
Co-authored-by: Morph <39850852+Morph1984@users.noreply.github.com>
Co-authored-by: VolcaEM <volcaem@users.noreply.github.com>
Co-authored-by: LC <lioncash@users.noreply.github.com>
This commit: Implements CPU Interrupts, Replaces Cycle Timing for Host
Timing, Reworks the Kernel's Scheduler, Introduce Idle State and
Suspended State, Recreates the bootmanager, Initializes Multicore
system.
Changes the GraphicsContext to be managed by the GPU core. This
eliminates the need for the frontends to fool around with tricky
MakeCurrent/DoneCurrent calls that are dependent on the settings (such
as async gpu option).
This also refactors out the need to use QWidget::fromWindowContainer as
that caused issues with focus and input handling. Now we use a regular
QWidget and just access the native windowHandle() directly.
Another change is removing the debug tool setting in FrameMailbox.
Instead of trying to block the frontend until a new frame is ready, the
core will now take over presentation and draw directly to the window if
the renderer detects that its hooked by NSight or RenderDoc
Lastly, since it was in the way, I removed ScopeAcquireWindowContext and
replaced it with a simple subclass in GraphicsContext that achieves the
same result
Currently, the main memory management code is one of the remaining
places where we have global state. The next series of changes will aim
to rectify this.
This change simply introduces the main skeleton of the class that will
contain all the necessary state.
Migrates the HLE service code off the use of directly accessing the
global system instance where trivially able to do so.
This removes all usages of Core::CurrentProcess from the service code,
only 8 occurrences of this function exist elsewhere. There's still quite
a bit of "System::GetInstance()" being used, however this was able to
replace a few instances.
This used to occur due to the VMManager being nullptr at the time cheats were registered (during load, but before it was done). This is bypassed by not accessing the VMManager for offset data until load is complete,
Avoids the use of global accessors, removing the reliance on global
state. This also makes dependencies explicit in the interface, as
opposed to being hidden
Makes the dependency explicit in the TelemetrySession's interface
instead of making it a hidden dependency.
This also revealed a hidden issue with the way the telemetry session was
being initialized. It was attempting to retrieve the app loader and log
out title-specific information. However, this isn't always guaranteed to
be possible.
During the initialization phase, everything is being constructed. It
doesn't mean an actual title has been selected. This is what the Load()
function is for. This potentially results in dead code paths involving
the app loader. Instead, we explicitly add this information when we know
the app loader instance is available.
This gives us significantly more control over where in the
initialization process we start execution of the main process.
Previously we were running the main process before the CPU or GPU
threads were initialized (not good). This amends execution to start
after all of our threads are properly set up.
Now that we have dependencies on the initialization order, we can move
the creation of the main process to a more sensible area: where we
actually load in the executable data.
This allows localizing the creation and loading of the process in one
location, making the initialization of the process much nicer to trace.
Like with CPU emulation, we generally don't want to fire off the threads
immediately after the relevant classes are initialized, we want to do
this after all necessary data is done loading first.
This splits the thread creation into its own interface member function
to allow controlling when these threads in particular get created.
Our initialization process is a little wonky than one would expect when
it comes to code flow. We initialize the CPU last, as opposed to
hardware, where the CPU obviously needs to be first, otherwise nothing
else would work, and we have code that adds checks to get around this.
For example, in the page table setting code, we check to see if the
system is turned on before we even notify the CPU instances of a page
table switch. This results in dead code (at the moment), because the
only time a page table switch will occur is when the system is *not*
running, preventing the emulated CPU instances from being notified of a
page table switch in a convenient manner (technically the code path
could be taken, but we don't emulate the process creation svc handlers
yet).
This moves the threads creation into its own member function of the core
manager and restores a little order (and predictability) to our
initialization process.
Previously, in the multi-threaded cases, we'd kick off several threads
before even the main kernel process was created and ready to execute (gross!).
Now the initialization process is like so:
Initialization:
1. Timers
2. CPU
3. Kernel
4. Filesystem stuff (kind of gross, but can be amended trivially)
5. Applet stuff (ditto in terms of being kind of gross)
6. Main process (will be moved into the loading step in a following
change)
7. Telemetry (this should be initialized last in the future).
8. Services (4 and 5 should ideally be alongside this).
9. GDB (gross. Uses namespace scope state. Needs to be refactored into a
class or booted altogether).
10. Renderer
11. GPU (will also have its threads created in a separate step in a
following change).
Which... isn't *ideal* per-se, however getting rid of the wonky
intertwining of CPU state initialization out of this mix gets rid of
most of the footguns when it comes to our initialization process.
Now that we have the address arbiter extracted to its own class, we can
fix an innaccuracy with the kernel. Said inaccuracy being that there
isn't only one address arbiter. Each process instance contains its own
AddressArbiter instance in the actual kernel.
This fixes that and gets rid of another long-standing issue that could
arise when attempting to create more than one process.
Gets rid of the largest set of mutable global state within the core.
This also paves a way for eliminating usages of GetInstance() on the
System class as a follow-up.
Note that no behavioral changes have been made, and this simply extracts
the functionality into a class. This also has the benefit of making
dependencies on the core timing functionality explicit within the
relevant interfaces.
Places all of the timing-related functionality under the existing Core
namespace to keep things consistent, rather than having the timing
utilities sitting in its own completely separate namespace.
This is a function that definitely doesn't always have a non-modifying
behavior across all implementations, so this should be made non-const.
This gets rid of the need to mark data members as mutable to work around
the fact mutating data members needs to occur.
Keeps the CPU-specific behavior from being spread throughout the main
System class. This will also act as the home to contain member functions
that perform operations on all cores. The reason for this being that the
following pattern is sort of prevalent throughout sections of the
codebase:
If clearing the instruction cache for all 4 cores is necessary:
Core::System::GetInstance().ArmInterface(0).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(1).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(2).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(3).ClearInstructionCache();
This is kind of... well, silly to copy around whenever it's needed.
especially when it can be reduced down to a single line.
This change also puts the basics in place to begin "ungrafting" all of the
forwarding member functions from the System class that are used to
access CPU state or invoke CPU-specific behavior. As such, this change
itself makes no changes to the direct external interface of System. This
will be covered by another changeset.
* get rid of boost::optional
* Remove optional references
* Use std::reference_wrapper for optional references
* Fix clang format
* Fix clang format part 2
* Adressed feedback
* Fix clang format and MacOS build
Many of the Current<Thing> getters (as well as a few others) were
missing const qualified variants, which makes it a pain to retrieve
certain things from const qualified references to System.
There's no need for shared ownership here, as the only owning class
instance of those Cpu instances is the System class itself. We can also
make the thread_to_cpu map use regular pointers instead of shared_ptrs,
given that the Cpu instances will always outlive the cases where they're
used with that map.