suyu/src/core/hid/motion_input.cpp

281 lines
8.1 KiB
C++
Raw Normal View History

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included
#include "common/math_util.h"
#include "core/hid/motion_input.h"
namespace Core::HID {
MotionInput::MotionInput() {
// Initialize PID constants with default values
SetPID(0.3f, 0.005f, 0.0f);
}
void MotionInput::SetPID(f32 new_kp, f32 new_ki, f32 new_kd) {
kp = new_kp;
ki = new_ki;
kd = new_kd;
}
void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) {
accel = acceleration;
}
void MotionInput::SetGyroscope(const Common::Vec3f& gyroscope) {
gyro = gyroscope - gyro_drift;
// Auto adjust drift to minimize drift
if (!IsMoving(0.1f)) {
gyro_drift = (gyro_drift * 0.9999f) + (gyroscope * 0.0001f);
}
if (gyro.Length2() < gyro_threshold) {
gyro = {};
} else {
only_accelerometer = false;
}
}
void MotionInput::SetQuaternion(const Common::Quaternion<f32>& quaternion) {
quat = quaternion;
}
void MotionInput::SetGyroDrift(const Common::Vec3f& drift) {
gyro_drift = drift;
}
void MotionInput::SetGyroThreshold(f32 threshold) {
gyro_threshold = threshold;
}
void MotionInput::EnableReset(bool reset) {
reset_enabled = reset;
}
void MotionInput::ResetRotations() {
rotations = {};
}
bool MotionInput::IsMoving(f32 sensitivity) const {
return gyro.Length() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f;
}
bool MotionInput::IsCalibrated(f32 sensitivity) const {
return real_error.Length() < sensitivity;
}
void MotionInput::UpdateRotation(u64 elapsed_time) {
const auto sample_period = static_cast<f32>(elapsed_time) / 1000000.0f;
if (sample_period > 0.1f) {
return;
}
rotations += gyro * sample_period;
}
2021-10-22 17:34:44 +00:00
// Based on Madgwick's implementation of Mayhony's AHRS algorithm.
// https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/blob/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS/MahonyAHRS.cs
void MotionInput::UpdateOrientation(u64 elapsed_time) {
if (!IsCalibrated(0.1f)) {
ResetOrientation();
}
// Short name local variable for readability
f32 q1 = quat.w;
f32 q2 = quat.xyz[0];
f32 q3 = quat.xyz[1];
f32 q4 = quat.xyz[2];
const auto sample_period = static_cast<f32>(elapsed_time) / 1000000.0f;
// Ignore invalid elapsed time
if (sample_period > 0.1f) {
return;
}
const auto normal_accel = accel.Normalized();
auto rad_gyro = gyro * Common::PI * 2;
const f32 swap = rad_gyro.x;
rad_gyro.x = rad_gyro.y;
rad_gyro.y = -swap;
rad_gyro.z = -rad_gyro.z;
// Clear gyro values if there is no gyro present
if (only_accelerometer) {
rad_gyro.x = 0;
rad_gyro.y = 0;
rad_gyro.z = 0;
}
// Ignore drift correction if acceleration is not reliable
if (accel.Length() >= 0.75f && accel.Length() <= 1.25f) {
const f32 ax = -normal_accel.x;
const f32 ay = normal_accel.y;
const f32 az = -normal_accel.z;
// Estimated direction of gravity
const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
// Error is cross product between estimated direction and measured direction of gravity
const Common::Vec3f new_real_error = {
az * vx - ax * vz,
ay * vz - az * vy,
ax * vy - ay * vx,
};
derivative_error = new_real_error - real_error;
real_error = new_real_error;
// Prevent integral windup
if (ki != 0.0f && !IsCalibrated(0.05f)) {
integral_error += real_error;
} else {
integral_error = {};
}
// Apply feedback terms
if (!only_accelerometer) {
rad_gyro += kp * real_error;
rad_gyro += ki * integral_error;
rad_gyro += kd * derivative_error;
} else {
// Give more weight to accelerometer values to compensate for the lack of gyro
rad_gyro += 35.0f * kp * real_error;
rad_gyro += 10.0f * ki * integral_error;
rad_gyro += 10.0f * kd * derivative_error;
// Emulate gyro values for games that need them
gyro.x = -rad_gyro.y;
gyro.y = rad_gyro.x;
gyro.z = -rad_gyro.z;
UpdateRotation(elapsed_time);
}
}
const f32 gx = rad_gyro.y;
const f32 gy = rad_gyro.x;
const f32 gz = rad_gyro.z;
// Integrate rate of change of quaternion
const f32 pa = q2;
const f32 pb = q3;
const f32 pc = q4;
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
quat.w = q1;
quat.xyz[0] = q2;
quat.xyz[1] = q3;
quat.xyz[2] = q4;
quat = quat.Normalized();
}
std::array<Common::Vec3f, 3> MotionInput::GetOrientation() const {
const Common::Quaternion<float> quad{
.xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w},
.w = -quat.xyz[2],
};
const std::array<float, 16> matrix4x4 = quad.ToMatrix();
return {Common::Vec3f(matrix4x4[0], matrix4x4[1], -matrix4x4[2]),
Common::Vec3f(matrix4x4[4], matrix4x4[5], -matrix4x4[6]),
Common::Vec3f(-matrix4x4[8], -matrix4x4[9], matrix4x4[10])};
}
Common::Vec3f MotionInput::GetAcceleration() const {
return accel;
}
Common::Vec3f MotionInput::GetGyroscope() const {
return gyro;
}
Common::Quaternion<f32> MotionInput::GetQuaternion() const {
return quat;
}
Common::Vec3f MotionInput::GetRotations() const {
return rotations;
}
void MotionInput::ResetOrientation() {
if (!reset_enabled || only_accelerometer) {
return;
}
if (!IsMoving(0.5f) && accel.z <= -0.9f) {
++reset_counter;
if (reset_counter > 900) {
quat.w = 0;
quat.xyz[0] = 0;
quat.xyz[1] = 0;
quat.xyz[2] = -1;
SetOrientationFromAccelerometer();
integral_error = {};
reset_counter = 0;
}
} else {
reset_counter = 0;
}
}
void MotionInput::SetOrientationFromAccelerometer() {
int iterations = 0;
const f32 sample_period = 0.015f;
const auto normal_accel = accel.Normalized();
while (!IsCalibrated(0.01f) && ++iterations < 100) {
// Short name local variable for readability
f32 q1 = quat.w;
f32 q2 = quat.xyz[0];
f32 q3 = quat.xyz[1];
f32 q4 = quat.xyz[2];
Common::Vec3f rad_gyro;
const f32 ax = -normal_accel.x;
const f32 ay = normal_accel.y;
const f32 az = -normal_accel.z;
// Estimated direction of gravity
const f32 vx = 2.0f * (q2 * q4 - q1 * q3);
const f32 vy = 2.0f * (q1 * q2 + q3 * q4);
const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4;
// Error is cross product between estimated direction and measured direction of gravity
const Common::Vec3f new_real_error = {
az * vx - ax * vz,
ay * vz - az * vy,
ax * vy - ay * vx,
};
derivative_error = new_real_error - real_error;
real_error = new_real_error;
rad_gyro += 10.0f * kp * real_error;
rad_gyro += 5.0f * ki * integral_error;
rad_gyro += 10.0f * kd * derivative_error;
const f32 gx = rad_gyro.y;
const f32 gy = rad_gyro.x;
const f32 gz = rad_gyro.z;
// Integrate rate of change of quaternion
const f32 pa = q2;
const f32 pb = q3;
const f32 pc = q4;
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period);
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period);
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period);
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period);
quat.w = q1;
quat.xyz[0] = q2;
quat.xyz[1] = q3;
quat.xyz[2] = q4;
quat = quat.Normalized();
}
}
} // namespace Core::HID